K-induction ============================== Formal Verification Techniques ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - **Model Checking**: Automatically explores all possible states of a system to verify properties. - **Theorem Proving**: Involves manually or semi-automatically proving properties using logical reasoning. - **Abstract Interpretation**: Analyzes programs by abstracting their behaviors to predict properties. K-induction falls under the **model checking** umbrella, extending traditional inductive methods to verify more intricate properties. Mathematical Induction Refresher --------------------------------- Mathematical induction is a foundational proof technique used to establish the truth of an infinite sequence of propositions. Components of Mathematical Induction ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. **Base Case**: Verify the statement for an initial value, typically `n = 0` or `n = 1`. 2. **Inductive Step**: Assume the statement holds for `n = k` (inductive hypothesis) and prove it for `n = k + 1`. Example: Sum of the First `n` Natural Numbers ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Prove that for all natural numbers `n`, the sum of the first `n` natural numbers is `(n(n + 1))/2`. **Proof:** 1. **Base Case (`n=1`)**: Sum = 1 = (1 × (1 + 1))/2 = 1 ✓ 2. **Inductive Step**: - **Inductive Hypothesis**: Assume true for `n = k`: Sum = `(k(k + 1))/2` - **To Prove for `n = k + 1`**: .. math:: \text{Sum} = \frac{k(k + 1)}{2} + (k + 1) = \frac{k(k + 1) + 2(k + 1)}{2} = \frac{(k + 2)(k + 1)}{2} Thus, the statement holds for `n = k + 1`. By the principle of mathematical induction, the formula is valid for all natural numbers `n`. Inductive Verification ----------------------- Inductive verification adapts mathematical induction principles to verify properties of systems modeled as state transitions. Basic Inductive Verification Approach ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. **Base Case**: Ensure the property `P` holds in the initial state(s) of the system. 2. **Inductive Step**: Show that if `P` holds in an arbitrary state, it holds in all successor states. If both steps are satisfied, `P` is an *invariant* of the system, meaning it remains true regardless of the system's evolution. Formal Definition ~~~~~~~~~~~~~~~~~~ Given a transition system with states and transitions, to verify a property `P`: .. math:: \text{Initial States}: \{ s_0 \ | \ P(s_0) \} \text{Transition Relation}: s \rightarrow s' \text{Property}: \forall s, s', \text{ if } P(s) \text{ then } P(s') Challenges in Inductive Verification ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - **Complex State Spaces**: Systems with large or infinite states make inductive proofs non-trivial. - **Choosing Inductive Hypotheses**: The strength and correctness of the inductive step depend on the hypotheses used. K-induction addresses some of these challenges by considering multiple states in the inductive step. K-Induction Explained ----------------------- **K-induction** extends basic inductive verification by considering `k` consecutive states in the inductive step, enhancing the power of the inductive hypothesis. Motivation for K-Induction ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - **Dependent Properties**: Some properties depend on multiple preceding states. - **Enhanced Expressiveness**: K-induction can capture temporal behaviors that simple induction cannot. Components of K-Induction ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. **Base Cases**: - Verify that the property `P` holds for the first `k` consecutive states starting from initial states. 2. **Inductive Step**: - **Inductive Hypothesis**: Assume `P` holds for `k` consecutive states. - **To Prove**: `P` holds for the next state `(k + 1)`. Formal Definition ~~~~~~~~~~~~~~~~~~ Given a system with a transition relation :math:`\rightarrow` and a property :math:`P`, k-induction involves: 1. **Base Cases**: .. math:: \text{Initial States}: P(s_0), P(s_1), \ldots, P(s_{k-1}) 2. **Inductive Step**: .. math:: \forall s_0, s_1, \ldots, s_k, \text{ if } P(s_0) \land P(s_1) \land \ldots \land P(s_{k-1}), \text{ then } P(s_k) Choosing `k` ~~~~~~~~~~~~~~ - **Small Systems**: `k = 1` may suffice. - **Complex Dependencies**: Larger values of `k` may be necessary to capture necessary dependencies. ====================== References ====================== - Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. MIT press. - Donaldson, A. F., Haller, L., & Kroening, D. (2011). Strengthening induction-based verification using k-induction. In Formal Methods in Computer-Aided Design (FMCAD), 2011 (pp. 51-58). IEEE. - Bradley, A. R., & Manna, Z. (2007). The Calculus of Computation: Decision Procedures with Applications to Verification. Springer Science & Business Media. - Sheeran, M., Singh, S., & Stålmarck, G. (2000). Checking safety properties using induction and a SAT-solver. In International Conference on Formal Methods in Computer-Aided Design (pp. 108-125). Springer, Berlin, Heidelberg.